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I.  Introduction 

Riemann hypothesis and Riemann conjecture are an important and famous mathematical problem 

left by Riemann in his paper "On the Number of prime Numbers not greater than x"
 [1]

, which is of 

great significance for the study of prime number distribution and known as the biggest unsolved 

mystery in mathematics. After years of hard work, I have solved this problem and strictly prove the 

Generalized hypothesis and the Generalized conjectures, The research shows that the Riemann 

hypothesis and the Riemann conjecture and the Generalized Riemann hypothesis and the 

Generalized Riemann conjecture are all completely valid and the Polignac conjecture,twin prime 

conjecture and Goldbach conjecture are completely true.  

 

II. ConclusionReasoning 

∑ n−s 
n =∏ (1 − p−s)−1

p (n∈ Z+, p ∈ Z+, s ∈C，n goes through all the natural numbers, p goes 

through all the prime numbers),this formula was proposed and proved by the Swiss mathematician 

Leonhard Euler in 1737 in a paper entitled "Some Observations on Infinite Series", Euler's product 

formula connects a summation expression for natural numbers with a continuative product 

expression for prime numbers, and contains important information about the distribution of prime 

numbers. This information was finally deciphered by Riemann after a long gap of 122 years, 

which led to Riemann's famous paper "On the Number of primes less than a Given Value
 [1]

. In 
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honor of  Riemann, the left end of the Euler product formula was named after Riemann, and the 

notation ζ(s) used by Riemann was adopted as the Riemann zeta function .  

Because e=2.718281828459045... ,e is a natural constant, I use * for Multiplication, ^ for 

multiplication,then based on euler's eix=cosx+isin(x) (x∈R), 

get (e^(3i))^(2)=(cos(3)+isin(3))^(2)=cos(2*3)+isin(2*3)=cos(6)+isin(6)，  

because e^(6i)=cos(6)+isin(6), 

so  

(e^(3i))^(2)= e^(6i)， 

In general, 

(e^(bi))^(c)= e^(b*ci)(b∈R，c∈R) is established. 

When x>0(x∈R),suppose  ej =x (e=2.718281828459045… ，  x∈R and x>0 ， j∈R) ， then 

j=ln(x),based on euler's eix= cos(x)+isin(x) (x∈R),will get 

eji = eln(x)i=cos(lnx)+isin(lnx)(x∈R and x>0). 

suppose y∈R and y ≠ 0, now let′s figure out expression for xyi(x∈R, and x>0, y∈R and y ≠ 0) 

is xyi=(ej)yi=(eji)y=(cos(lnx) + isin(lnx))y. 

Suppose s is any complex number, and s=ρ+yi (ρ∈R,y∈R and y ≠ 0,s∈C) ,then let's find the 

expression of xs(x∈R and x>0, s∈C) , 

You put s=ρ+yi (ρ∈R,y∈R and y ≠ 0,s∈C) and xyi=(ej)yi=(eji)y=(cos(lnx) + isin(lnx))y into 

xs and you will get  

xs=x(ρ+yi)=xρxyi=xρ(cos(lnx) + i sin(lnx))y=xρ(cos(ylnx) + isin(ylnx)) , 

You put s=ρ-yi (ρ∈R,y∈R and y ≠ 0,s∈C) and xyi=(ej)yi=(eji)y=(cos(lnx) + isin(lnx))y into 

xs and you will get  

xs = x(ρ−yi) = xρx−yi = xρ(xyi)−1 =

xρ(cos(lnx) + i sin(lnx))−y=xρ(cos(−ylnx) + isin(−ylnx))=xρ(cos(ylnx) − isin(ylnx)). 

For any complex number s,when Rs(s) > 0 ∧ (s ≠ 1),then according to Dirichlet function  

η (s)= ∑
(−1)n−1

ns
∞
1 (s ∈ C and Rs(s) > 0 ∧ (s ≠ 1))  and η (s)=(1- 21−s ) ζ(s)(s ∈ C and Rs(s) >

0 ∧ s ≠

1, ζ(s) is the Riemann Zeta function) ,so  Riemann  ζ(s) =
η(s)

(1−21−s)
=

1

(1−21−s)
∑

(−1)n−1

ns =∞
1

(−1)n−1

(1−21−s)
∏ (1 − p−s)−1

p (s ∈ C and Rs(s) > 0 ∧ (s ≠ 1),n∈ Z+, p ∈ Z+, s ∈C，n goes through 

all the natural numbers, p goes through all the prime numbers). Let's prove that ζ(s) and ζ((s) 

are complex conjugations of each other. 

∑
(−1)n−1

ns
∞
1 =[ 1−ρCos(yln1)− 2−ρCos(yln2)+ 3−ρCos(yln3)−4−ρCos(yln4)-...]-i[1−ρSin(yln1)

− 2−ρsin(yln2)+ 3−ρsin(yln3) − 4−ρsin(yln4)+...]= U-Vi, 
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∑
(−1)n−1

ns
∞
1 =[ 1−ρCos(yln1)−2−ρCos(yln2)+ 3−ρCos(yln3)−4−ρCos(yln4)-...]+i[1−ρSin(yln1)

− 2−ρsin(yln2)+ 3−ρsin(yln3)−4−ρsin(yln4)+...]= U+Vi, 

∑
(−1)n−1

n1−s
∞
1 =[ 1ρ−1Cos(yln1)− 2ρ−1Cos(yln2)+ 3ρ−1

Cos(yln3)−4−ρCos(yln4)-...]+i[1−ρSin(yl

n1)− 2−ρsin(yln2)+ 3−ρsin(yln3) − 4−ρsin(yln4)+...], 

∑
(−1)n−1

nk−s
∞
1 =[ 1ρ−kCos(yln1)− 2ρ−kCos(yln2)+ 3ρ−k

Cos(yln3)−4ρ−k
Cos(yln4)-...]+i[1ρ−k

Sin(

yln1)− 2ρ−k
sin(yln2)+ 3ρ−k

sin(yln3) − 3ρ−k
sin(yln4)+...], 

So 

∏ (1 − p−s)−1
p =∏ (1 − p−s)−1

p  ,     

So 

 
(−1)n−1

(1−21−s)
∑

(−1)n−1

ns  ∞
1 =  

(−1)n−1

(1−21−s)
∑

(−1)n−1

ns
 ∞

1  , 

 
 

(−1)n−1

(1−21−s)
∏ (1−p−s)−1

p = 
(−1)n−1

(1−21−s)
∏ (1−p−s)−1

p  ,  

ζ(s)=
1

(1−21−s)
∑

(−1)n−1

ns
=

(−1)n−1

(1−21−s)
∏ (1 − p−s)−1

p  ,∞
1  

ζ(s)=
(−1)n−1

(1−21−s
)

∏ (1 − p−s)−1
p =

(−1)n−1

(1−21−s
)

∏ (1 − p−s)−1
p . 

So 

Only ζ(s)=ζ(s) [2] . 

Becuase 

so 

p1−s=p(1−ρ−yi)=p1−ρx−yi=p1−ρ(cos(lnp) + i sin(lnp))−y=p1−ρ(cos(ylnp) − isin(ylnp)) , 

p1−s = p(1−ρ+yi) = p1−ρpyi = p1−ρ(pyi) = p1−ρ(cos(lnp) + i sin(lnp))y = (p1−ρ(cos(ylnp) +

isin(ylnp))  

Then 

p−(1−s)==p(−1+ρ+yi)=pρ−1xyi = pρ−1 1

(cos(ylnp)−isin(ylnp))  =(pρ−1(cos(ylnp) + isin(ylnp)) , 

p−(s)=p−(ρ−yi)=p−ρpyi = (p−ρ(cos(ylnp) + isin(ylnp)) , 

so 

(1 − p−(1−s))=1-(pρ−1(cos(ylnp) + isin(ylnp)) =1 − pρ−1  cos(ylnp) − ipρ−1sin(ylnp) , 

(1 − p−(s))=1-(p−ρ(cos(ylnp) + isin(ylnp)) =1 − p−ρ  cos(ylnp) − ip−ρsin(ylnp) , 

∑
(−1)n−1

n1−s  ∞
1 =[ 1ρ−1Cos(yln1)− 2ρ−1Cos(yln2)+ 3ρ−1Cos(yln3)−4ρ−1Cos(yln4)-...]+i[1ρ−1Sin(yln

1)− 2ρ−1sin(yln2)+ 3ρ−1sin(yln3) − 4ρ−1sin(yln4)+...] , 

∑
(−1)n−1

ns
∞
1 = [ 1−ρ Cos(yln1) −2−ρ Cos(yln2)+  3−ρ Cos(yln3) −4−ρ Cos(yln4)-...]+i[ 1−ρ Sin(yln1)

− 2−ρsin(yln2)+ 3−ρsin(yln3)−4−ρsin(yln4)+...], 
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when ρ=
1

2
, 

then 

∑
(−1)n−1

n1−s
∞
1 =∑

(−1)n−1

ns
∞
1 , 

(1 − p−(1−s))
 
=(1 − p−s), 

and 

(1 − p−(1−s))
−1

=(1 − p−s )
−1

, 

∏ (1 − p−(1−s))
−1

p =∏ (1 − p−s)−1
p , 

and 

(−1)n−1

(1−21−s)
∏ (1 − p−(1−s))

−1

p =
(−1)n−1

(1−21−𝑠)
∏ (1 − p−s)

−1

p , 

(−1)n−1

(1−21−s)
∑

(−1)n−1

n1−s
∞
1 =

(−1)n−1

(1−21−s)
∑

(−1)n−1

ns
∞
1 , 

and 

ζ(1 − s)=
(−1)n−1

(1−21−s)
∏ (1 − p−(1−s))

−1

p , 

ζ(s)=
(−1)n−1

(1−21−s)
∏ (1 − p−s)

−1

p  , 

ζ(1 − s)=
(−1)n−1

(1−21−s)
∑

(−1)n−1

n1−s
∞
1 , 

ζ(s)=
(−1)n−1

(1−21−s)
∑

(−1)n−1

ns
∞
1 , 

so when ρ=
1

2
, then 

Only ζ(1 − s)=ζ(s). 

According the equation ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) obtained by Riemann,since Riemann 

has shown that the Riemann ζ(s) function has zero, that is, in  

ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s),ζ(s)=0 is true.  

When ζ(s)=0, then only ζ(k − s)= ζ(s)=0, and  

When ζ(s)=0,then ζ(k − s)=ζ(s)=0. 

But the Riemann ζ(s)function only satisfies ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s),so when ζ(s)=0, 

then only ζ(1 − s) = ζ(s) =0, and when ζ(s) =0, then only ζ(1 − s) = ζ(s) =0, which is 

ζ(k − s)=ζ(1 − s) = ζ(s),so only k=1 be true.so only Re(s)=
k

2
=

1

2
 is true . 

∑
(−1)n−1

nk−s
∞
1 =[ 1ρ−kCos(yln1)− 2ρ−kCos(yln2)+ 3ρ−k

Cos(yln3)−4ρ−k
Cos(yln4)-...]+i[1ρ−k

Sin
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(yln1)− 2ρ−k
sin(yln2)+ 3ρ−k

sin(yln3) − 3ρ−k
sin(yln4)+...], 

∑
(−1)n−1

ns
∞
1 =[ 1−ρCos(yln1)−2−ρCos(yln2)+ 3−ρCos(yln3)−4−ρCos(yln4)-...]+i[1−ρSin(yln1)− 2−ρ

sin(yln2)+ 3−ρsin(yln3)−4−ρsin(yln4)+...], 

pk−s=p(k−ρ−yi)=pk−ρx−yi=pk−ρ(cos(lnp) + i sin(lnp))−y=pk−ρ(cos(ylnp) − isin(ylnp)) , 

p1−s=p(1−ρ+yi)=p1−ρpyi=p1−ρ(pyi) = p1−ρ(cos(lnp) + i sin(lnp))y=(p1−ρ(cos(ylnp) + isin(ylnp)) , 

Then 

p−(k−s)=p(−k+ρ+yi)=pρ−kxyi = pρ−k 1

(cos(ylnp)−isin(ylnp))  =(pρ−k(cos(ylnp) + isin(ylnp)) , 

p−(s)=p−(ρ−yi)=p−ρpyi = (p−ρ(cos(ylnp) + isin(ylnp)) , 

p−(k−s)=(pρ−k(cos(ylnp) + isin(ylnp)) , 

so 

(1 − p−(k−s))=1-(pρ−k(cos(ylnp) + isin(ylnp)) =1 − pρ−k  cos(ylnp) − ipρ−ksin(ylnp) , 

(1 − p−s)=1-(p−ρ(cos(ylnp) + isin(ylnp)) =1 − p−ρ  cos(ylnp) − ip−ρsin(ylnp) , 

So 

so when ρ=
k

2
(k∈R) then 

∑
(−1)n−1

nk−s
∞
1 =∑

(−1)n−1

ns
∞
1 , 

(1 − p−(k−s))
 
=(1 − p−s) 

and 

(1 − p−(k−s))
−1

=(1 − p−s )
−1

, 

∏ (1 − p−(k−s))
−1

p =∏ (1 − p−s)−1
p , 

and 

 

1

(1−21−s)
∑

(−1)n−1

nk−s
∞
1 =

1

(1−21−s)
∑

(−1)n−1

ns
∞
1 , 

and 

ζ(k − s)=
(−1)n−1

(1−21−s)
∏ (1 − p−(k−s))

−1

p , 

ζ(s)=
(−1)n−1

(1−21−s)
 ∏ (1 − p−s)

−1

p  , 

ζ(k − s)=
1

(1−21−s)
∑

(−1)n−1

nk−s
∞
1 , 

ζ(s)=
1

(1−21−s)
∑

(−1)n−1

ns
∞
1 , 
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so when ρ=
k

2
(k∈R) then 

Only ζ(k − s)=ζ(s). 

According the equation ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) obtained by Riemann,since Riemann 

has shown that the Riemann ζ(s) function has zero, that is, in  

ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s),ζ(s)=0 is true.  

When ζ(s)=0, then only ζ(k − s)= ζ(s)=0, and  

When ζ(s)=0,then ζ(k − s)=ζ(s)=0.And because when ζ(s)=0, then only ζ(1 − s)= ζ(s)=0, 

which is ζ(k − s) ==ζ(s),so only k=1 be true. 

According ζ(s)=ζ(1-s)=0 and ζ(s)=ζ(s)=ζ(1-s)=0,then s=s  or s=1-s or s=1-s ,so s∈R, 

or ρ +yi=1- ρ -yi ,or ρ -yi=1- ρ -yi, so  s ∈ R, or  ρ =
1

2
 and y=0,or ρ =

1

2
 and y ∈ R and 

y≠ 0,so s ∈ R, for example s=-2n(n∈ Z+), or s=
1

2
+oi ,or s=

1

2
+yi(y ∈R and y ≠ 0).ζ(

1

2
) >

𝜁(1) = ∞,drop it, s=-2n(n∈ Z+),It's the trivial zero of the Riemann ζ(s) function, drop it. 

Beacause only when ρ=
1

2
,the next three equations, ζ(ρ + yi)=0, ζ(1 − ρ − yi)=0, and ζ(ρ-yi)=0 are 

all true, ζ(
1

2
) > 𝜁(1) = ∞, so only s=

1

2 
+yi (y∈R and y ≠ 0,s∈C) is true,or say only s=

1

2
+ti 

(t∈R and t ≠ 0,s∈C) is true. Since Riemann has shown that the Riemann ζ(s) function has zero, 

that is, in ζ(1-s)=21−sπ −s Cos(
π s

2
)Γ(s)ζ(s), ζ(s)=0 is true.According the equationξ(s) =

1

2
s(s-1) Γ(

s

2
)π

− 
s

2ζ(s) obtained by Riemann , so ξ(s) = ξ(1 − s) , because Γ(
s

2
) = Γ(

s

2
)  , and 

π
− 

s

2= π− 
s

2 , and because ζ(s)=ζ(s)，so ξ(s)=ξ(s). So when ζ(s)=0 ,then ξ(s)=ζ(1 − s) = ζ(s) =

0and ξ(s)=ξ(1 − s)=ξ(s)=0 must be true , so the zeros of the Riemann ζ(s) function and the 

nontrivial zeros of the Riemann ξ(s) function are identical, so the complex root of Riemann 

ξ (s)=0 satisfies s=
1

2
+ti ( t ∈ R  and t ≠ 0 ,s ∈ C) , according to the Riemann function 

∏
s

2
(s-1)π

−
s

2ζ(s )=ξ(t) and he Riemann hypothesis s=
1

2
+ti, because s≠1, and ∏

s

2
≠o, π

−
s

2 ≠o, so 

∏
s

2
(s-1) π

−
s

2 ≠ o, and when ξ(t)=0, then ∏
s

2
(s-1) π

−
s

2 ζ(
1

2
+ti)=ξ(t)=0, and ζ(

1

2
+ti)=

ξ(t)

∏
s

2
(s−1)π

−
s
2

= 

0

∏
s

2
(s−1)π

−
s
2

 =0，so t∈R and t ≠ 0. So the root t of the equations ∏
s

2
(s-1)π

−
s

2ζ(
1

2
+ti )=ξ(t)=0 and 

4∫
d(x

3
2Ψ’(x) )

dx

∞

1
x

−
1

4 cos(
1

2
tlnx)dx=ξ(t)=0 and ξ(t)=

1

2
 - (t2 +

1

4
)∫ Ψ(x) 

∞

1
x

−
3

4 cos(
1

2
tlnx )=0 must be real  
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and t ≠ 0 .If Re(s)=
k

2
(k ∈ R) ,then ζ(k-s)= 2k−sπ −s Cos(

π s

2
)Γ(s)ζ(s) and 

ξ(k − s) =
1

2
s(s-k) Γ(

s

2
)π

− 
s

2ζ(s) are true , so when ζ(s)=0 ,then ζ(s) = ζ(k − s) = ζ(s) = 0 and 

ξ(s)=ξ(k − s)=ξ(s)=0 must be true , and s=
k

2
+ti (k∈R，t∈R and t ≠ 0,s∈C) must be true, then 

∏
s

2
(s-k)π

−
s

2ζ(
k

2
+ti)=ξ(t)=0, and ζ(

k

2
+ti)= 

ξ(t)

∏
s

2
(s−k)π

−
s
2

=
0

∏
s

2
(s−k)π

−
s
2

=0,so t∈R and t ≠ 0. So the root t 

of the equations ∏
s

2
(s-k) π

−
s

2 ζ(
k

2
+ti )=ξ(t)=0 must be real  and t ≠ 0 . But the Riemann 

ζ(s)function only satisfies ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) and ξ(s) =

1

2
s(s-1)Γ(

s

2
)π

− 
s

2ζ(s)，is 

also say that only ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) is true , so only Re(s)=

k

2
=

1

2
 is true, so only 

k=1 is true.The Riemann hypothesis and the Riemann conjecture must satisfy the properties of the 

Riemann ζ(s) function and the Riemann ξ(s) function, The properties of the Riemann ζ(s) function 

and the Riemann ξ(s) function are fundamental, the Riemann hypothesis and the Riemann conjecture 

must be correct to reflect the properties of the Riemann ζ(s) function and the Riemann ξ(s) function, 

that is, the roots of the Riemann ξ(t) function can only be real, that is, Re(s) can only be equal to 
1

2
, 

and Im(s) must be real, and Im(s) is not equal to zero.So the Riemann hypothesis and the Riemann 

conjecture must be correct. 

For any complex number s, WhenRs(s) is any real number, including Rs(s)>0 ∧ (s ≠

1) and Rs(s) ≤ 0 ∧ (s ≠ 0),  then Riemann Zeta() function is ζ(s)= 2sπs−1 Sin(
πs

2
)Γ(1-s)ζ(1-s). 

Suppose s=ρ+yi (ρ∈R,y∈R and y ≠ 0,s∈C),let's prove that ζ(s) and ζ(s) are complex conjugations 

of each other and get the equation ζ(s)=2sπs−1Sin(
πs

2
)Γ(1-s)ζ(1-s). 

The reasoning in Riemann's paper goes like:  

2sin(πs)∏(s − 1)ζ(s)=(2π)s ∑ ns−1((−i)s−1+i
s−1

)
 [1] 

(Formula 3), 

based on euler's eix=cos(x) + i sin(x) (x ∈ R) can get     

e
i(−

π

2
)
=cos(

−π

2
) +isin(

−π

2
) =0-i= -i ,  

e
i(

π

2
)
=cos(

π

2
)+isin(

π

2
)=0+i=i ,       

then 

(−i)s−1 + i
s−1 = (−i)−1(−i)s+(i)−1(i)s=(−i)−1e

i(−
π

2
)s + i

(−1)
e

i(
π

2
)s

=  

ie
i(−

π

2
)s

-ie
i(

π

2
)s =i(cos

−πs

2
+isin

−πs

2
)-i(cos

πs

2
+isin

πs

2
)=icos(

πs

2
)-icos(

πs

2
)+sin(

πs

2
)+sin(

πs

2
) 

=2sin(
πs

2
)  (Formula 4) 
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According to the property of Π(s-1)=Γ(s) of the gamma function,and  

Σns−1=ζ(1-s), 

Substitute the above (Formula 4) into the above (Formula 3), will get  

2sin(πs)Γ(s)ζ(s)=(2π )sζ(1 − s)2 sin
πs

2
 (Formula 5), 

If I substitute it into (Formula5), according to the double Angle formula sin(πs)=2Sin(
πs

2
)Cos(

πs

2
), 

we Will get ζ(1-s)=21−sπ −sCos(
πs

2
)Γ(s)ζ(s) (Formula 6), 

When s≠ −2n(n ∈ Z+),because π−
1−s

2 ≠ 0 ≠ 0 and Γ(
1−s

2
) ≠ 0,so when ζ(s)=0, then ζ(1-s)=0, 

Substituting s→1-s, that is taking s as 1-s into Formula 6, we will get 

ζ(s)=2sπs−1Sin(
πs

2
)Γ(1-s)ζ(1-s) (Formula 7), 

This is the functional equation for ζ(s). To rewrite it in a symmetric form, use the residual formula 

of the gamma function
 [3]

 

Γ(Z)Γ(1-Z)=
π

sin(πZ)
 (Formula 8)  

and Legendre's formula  

Γ(
Z

2
)Γ(

Z

2
+

1

2
)=21−Zπ

1

2Γ(Z) (Formula 9) , 

Take z= 
s

2
 in (Formula 8) and substitute it to get 

sin(
πs

2
)= 

π

Γ(
s

2
)Γ(1− 

s

2
)
 (Formula 10) , 

In (Formula 9), let z=1-s and substitute it in to get 

Γ(1-s)=2−sπ
−

1

2Γ(
1−s

2
)Γ(1- 

s

2
)  (Formula 11) 

By substituting (Formula 10) and (Formula 11) into (Formula 7), we get 

π
−

s

2Γ(
s

2
)ζ(s)=π

−
1−s

2 Γ(
1−s

2
)ζ(1-s), 

also 

Γ(
s

2
)π

−
s

2ζ(s) is invariant under the transformation s→1-s, 

And that's exactly what Riemann said in his paper. 

That is to say: 

Γ(
s

2
)π

−
s

2ζ(s) is invariant under the transformation s→1-s , 

also 

∏(
s

2
− 1)π

−
s

2ζ(s)= ∏(
1−s

2
− 1)π

−
1−s

2
 
ζ(1-s) 

or  
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π
−

s

2Γ(
s

2
)ζ(s)=π

−
1−s

2 Γ(
1−s

2
)ζ(1-s) (Formula 2), 

Then ζ(s)=2sπs−1Sin(
πs

2
)Γ(1-s)ζ(1-s) , 

under the transformation s→1-s ,will get 

ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) (Formula 1) 

Because  L(s,✗(n))=✗(n)ζ(s) and L(1 − s,✗(n))=✗(n)ζ(1-s)， 

and according to ζ(s)=2sπs−1Sin(
πs

2
)Γ(1-s)ζ(1-s) (Formula 7), 

so 

Only L(s,✗(n))=2sπs−1Sin(
πs

2
)Γ(1-s)L(1 − s,✗(n))(Formula 12). 

According to the property that Gamma function Γ(s) and exponential function are nonzero, is also 

that Γ(
1−s

2
)≠ 0, and π−

1−s

2 ≠ 0, according to π
−

s

2Γ(
s

2
)ζ(s)=π

−
1−s

2 Γ(
1−s

2
)ζ(1-s) (Formula 2), 

Mathematicians have shown that the real part of the complex independent variable s of the 

Riemann ζ(s)function will have zero only if 0<Re(s)<1 and Im(s)≠ 0, so we agree on 

Riemann  ζ(s) =
η(s)

(1−21−s)
=

1

(1−21−s)
∑

(−1)n−1

ns =
(−1)n−1

(1−21−s)
∞
1 ∏ (1 − p−s)−1

p (s ∈ C and 0 <

Rs(s) < 1 ∧ (s ≠ 1) and Im(s) ≠ 0 ,n∈ Z+, p ∈ Z+, s ∈C，n goes through all the natural numbers, 

p goes through all the prime numbers). 

According the equation ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) obtained by Riemann,since Riemann 

has shown that the Riemann ζ(s) function has zero, that is, in ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s), 

so ζ(s)=0 is true, and so we agree on ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s)(s ∈ C and 0 < Rs(s) <

1 ∧ (s ≠ 1) and Im(s) ≠ 0 ,n∈ Z+, p ∈ Z+, s ∈C，n goes through all the natural numbers, p goes 

through all the prime numbers).  

According to the property that Gamma function Γ(s) and exponential function are nonzero, is also 

that Γ(
1−s

2
)≠ 0, and π−

1−s

2 ≠ 0, 

So when ζ(s)=0, then ζ(1-s)=0, also must ζ(s)=ζ(1-s)=0. 

Because sin(Z)=
eiZ−e−iZ

2i
,Suppose Z=s=ρ+yi (ρ∈R,y∈R and y ≠ 0,s∈C), then  

sin(s)=
eis−e−is

2i
 = 

ei(ρ+yi)−e−i(ρ+yi)

2i
, 

sin(s)=
eis−e−is

2i
 = 

ei(ρ−yi)−e−i(ρ−yi)

2i
, 

file:///C:/Users/admin/AppData/Local/Temp/www.ajmrd.com


The proof of the Riemann conjecture 

Multidisciplinary Journal           www.ajmrd.com                    Page | 31 
 

according xs=x(ρ+yi)=xρxyi=xρ(cos(lnx) + i sin(lnx))y=xρ(cos(ylnx) + isin(ylnx)) , then 

es=e(ρ+yi)=eρeyi=eρ(cos(y) + i sin(y)) = eρ(cos(y) + isin(y)) 
, 

eis=ei(ρ+yi)=eρi(cos(iy) + isin(iy)) = (cos(ρ) + isin(ρ))(cos(iy) + isin(iy))  

eis = ei(ρ−yi)=eρi(cos(−iy) + isin(−iy)) = (cos(ρ) + isin(ρ))(cos(iy) − isin(iy)) , 

e−is=e−i(ρ+yi)=e−ρi(cos(−iy) + isin(−iy)) = (cos(ρ) − isin(ρ))(cos(iy) − isin(iy))  

e−is = e−i(ρ−yi)=e−ρi(cos(iy) + isin(iy)) = (cos(ρ) − isin(ρ))(cos(iy) + isin(iy)) , 

2s=2(ρ+yi)=2ρ2yi=2ρ(cos(ln2) + i sin(ln2))y=2ρ(cos(yln2) + isin(yln2)) , 

2s=2(ρ−yi)=2ρ2−yi=2ρ(cos(ln2) + i sin(ln2))−y=2ρ(cos(yln2) − isin(yln2)) , 

πs−1=2(ρ−1+yi)=2ρ−12yi=2ρ−1(cos(ln2) + i sin(ln2))y=2ρ−1(cos(yln2) + isin(yln2)) , 

πs−1=2(ρ−1−yi)=2ρ−12−yi=2ρ(cos(ln2) + i sin(ln2))−y=2ρ−1(cos(yln2) − isin(yln2)) , 

So 

2s=2s, πs−1=πs−1 , 

and 

eis−e−is

2i
 =

eis−e−is

2i
 , 

So 

Sin(s)=Sin(s) , 

So 

Sin(
πs

2
)=Sin(

πs

2
)  . 

And the gamma function on the complex field is defined as: 

Γ(s)=∫ 𝑡𝑠−1+∞

0
𝑒−𝑡dt 

among 

Re(s)>0,this definition can be extended by the analytical continuation principle to the entire 

field of complex numbers, except for non-positive integers, 

So 

Γ(s)=Γ(s) ,  

and  

Γ(1-s)=Γ(1 − s) . 

When ζ(1-s)=ζ(1 − s)=0=ζ(s)=ζ(1-s)=0, and according ζ(s)=2sπs−1Sin(
πs

2
)Γ(1-s)ζ(1-s) , then 

Only ζ(s)=ζ(s)=0,is also say ζ(s)=ζ(s)=ζ(1-s)=0. so only ζ(ρ+yi)=ζ(ρ-yi)=0 is true. 

According the equation ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) obtained by Riemann,since Riemann 

has shown that the Riemann ζ(s) function has zero, that is, in ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s), 

ζ(s)=0 is true, so when ζ(s)=0 , then only ζ(s)=ζ(1-s)=0 is true. 

According ζ(s)=ζ(1-s)=0 and ζ(s)=ζ(s)=ζ(1-s)=0,then only s=sor s=1-s or s=1-s ,so s∈R, 

or ρ +yi=1- ρ -yi ,or ρ -yi=1- ρ -yi, so  s ∈ R, or ρ=
1

2
and y=0,or ρ =

1

2
 and y ∈ R and y≠
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0,so s ∈ R, for example s=-2n(n∈ Z+), or s=
1

2
+oi ,or s=

1

2
+yi(y ∈R and y ≠ 0).ζ(

1

2
) > 𝜁(1) =

∞,drop it, s=-2n(n∈ Z+),It's the trivial zero of the Riemann ζ(s) function, drop it. 

Beacause only when ρ =
1

2
,the next three equations, ζ(ρ + yi )=0, ζ(1 − ρ − yi )=0, and 

ζ(ρ-yi)=0 are all true, ζ(
1

2
) > 𝜁(1) = ∞,so only s=

1

2 
+yi (y∈R and y ≠ 0,s∈C) is true,or say 

only s=
1

2
+ti (t∈R and t ≠ 0,s∈C)is true.Since Riemann has shown that the Riemann ζ(s) 

function has zero, that is, in ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s), ζ(s)=0 is true.According the 

equationξ(s) =
1

2
s(s-1)Γ(

s

2
)π

− 
s

2ζ(s) obtained by Riemann, so ξ(s)=ξ(1 − s), because Γ(
s

2
)=Γ(

s

2
) , 

and π
− 

s

2=π
− 

s

2 , and because ζ(s)=ζ(s)，so ξ(s)=ξ(s). So when ζ(s)=0 ,then ξ(s)=ζ(1 − s) =

ζ(s) = 0and ξ(s)=ξ(1 − s)=ξ(s)=0 must be true , so the zeros of the Riemann ζ(s) function and 

the nontrivial zeros of the Riemann ξ(s) function are identical, so the complex root of 

Riemann ξ(s)=0 satisfies s=
1

2
+ti (t∈R and t ≠ 0,s∈C) , according to the Riemann function 

∏
s

2
(s-1)π

−
s

2ζ(s )=ξ(t) and he Riemann hypothesis s=
1

2
+ti, because s≠1, and ∏

s

2
≠o, π

−
s

2 ≠o, so 

∏
s

2
(s-1) π

−
s

2 ≠ o, and when ξ(t)=0, then ∏
s

2
(s-1) π

−
s

2 ζ(
1

2
+ti)=ξ(t)=0, and ζ(

1

2
+ti)=

ξ(t)

∏
s

2
(s−1)π

−
s
2

= 

0

∏
s

2
(s−1)π

−
s
2

=0，so t∈R and t ≠ 0. So the root t of the equations ∏
s

2
(s-1)π

−
s

2ζ(
1

2
+ti )=ξ(t)=0 and 

4∫
d(x

3
2Ψ’(x) )

dx

∞

1
x

−
1

4 cos(
1

2
tlnx)dx=ξ(t)=0 and ξ(t)=

1

2
 - (t2 +

1

4
)∫ Ψ(x) 

∞

1
x

−
3

4 cos(
1

2
tlnx )=0 must be real  

and t ≠ 0 .If Re(s)=
k

2
(k ∈ R) ,then ζ(k-s)= 2k−sπ −s Cos(

π s

2
)Γ(s)ζ(s) and 

ξ(k − s) =
1

2
s(s-k) Γ(

s

2
)π

− 
s

2ζ(s) are true , so when ζ(s)=0 ,then ζ(s) = ζ(k − s) = ζ(s) = 0 and 

ξ(s)=ξ(k − s)=ξ(s)=0 must be true , and s=
k

2
+ti (k∈R，t∈R and t ≠ 0,s∈C) must be true, then 

∏
s

2
(s-k)π

−
s

2ζ(
k

2
+ti)=ξ(t)=0, and ζ(

k

2
+ti)=

ξ(t)

∏
s

2
(s−k)π

−
s
2

=
0

∏
s

2
(s−k)π

−
s
2

=0,so t∈R and t ≠ 0. So the root  

of the equations ∏
s

2
(s-k) π

−
s

2 ζ(
k

2
+ti )=ξ(t)=0 must be real  and t ≠ 0 . But the Riemann 

ζ(s)function only satisfies ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) and ξ(s) =

1

2
s(s-1)Γ(

s

2
)π

− 
s

2ζ(s)，is 
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also say that only ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) is true , so only Re(s)=

k

2
=

1

2
 is true, so only 

k=1 is true.The Riemann hypothesis and the Riemann conjecture must satisfy the properties of the 

Riemann ζ(s) function and the Riemann ξ(s) function, The properties of the Riemann ζ(s) function 

and the Riemann ξ(s) function are fundamental, the Riemann hypothesis and the Riemann conjecture 

must be correct to reflect the properties of the Riemann ζ(s) function and the Riemann ξ(s) function, 

that is, the roots of the Riemann ξ(t) function can only be real, that is, Re(s) can only be equal to 
1

2
, 

and Im(s) must be real, and Im(s) is not equal to zero.So the Riemann hypothesis and the Riemann 

conjecture must be correct. 

Riemann found in his paper that 

             ∏ (
s

2
− 1) π

−
s

2 ζ(s) = ∫ ψ(x) 
∞ 

1
x

s

2
−1

dx+∫ ψ(
1

x
) 

∞ 

1
x

s−3

2 dx    

                     +
1

2
∫ (x

s−3

2
1

0
 -x

s

2
−1

)dx 

= 
1

s(s−1)
 + ∫ ψ(x) 

∞ 

1
(x

s

2
−1

+x
−

1+s

2 )dx , 

Because 
1

s(s−1)
 and  ∫ ψ(x) 

∞ 

1
(x

s

2
−1

+x
−

1+s

2 )dx are all invariant under the  

transformation s→1-s If I introduce the auxiliary function ψ(s)=∏ (
s

2
− 1) π

−
s

2 ζ(s), 

So I can just write it as ψ(s)=ψ(1-s). But it would be more convenient to add the factor s(s − 1)to ψ(s) 

and introduce the coefficient 
1

2
, which is exactly what Riemann did, is that to takeξ(s) =

1

2
s(s-1)Γ(

s

2
)π

− 
s

2 

ζ(s).Because the factor (s-1) cancels out the first pole of ζ(s)at s=1, And the factor s cancels out the 

pole of Γ(
s

2
) at s=0, and s  is equal to -2, -4, -6,...,the rest of the poles of  Γ(

s

2
) cancel out . So ξ(s) is 

an integral function.And notice that the factor s(s − 1) obviously doesn't change under the 

transformation s → 1 − s ,So we also have the function ξ(s) = ξ(1 − s) . Base on 

ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) (Formula 1).When sin(

πs

2
)=0，then if s= -2n(n∈ Z+), ξ(s) is going to 

take the zero . At the same time, according to ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s),when s≠1+2n(n∈

Z+) , and if ζ(s)=0,then must ζ(1-s)=0, is that to say ζ(s)=ζ(1-s)=0. According to Riemann's hypothesis 

s=
1

2
+ti(t∈C,s∈C and t ≠ 0), s and t differ by a linear transformation . It's a 90 degree rotation plus a 

translation of 
1

2
. So line Re(s)=

1

2
 in the s plane corresponds to the real number line in the t plane,the 

zero of Riemann ζ(s) on the critical line Re(s)=
1

2
 corresponds to the real root of ξ(t)(t∈C and t ≠ 0).In 

Riemann functionξ(t), the function equation ξ(s)=ξ(1 − s) becomes equation ξ(t)=ξ(−t). ξ(t)(t ∈

C and t ≠ 0) is an even function, an even function is a symmetric function, it’s zeros are distributed 

symmetrically with respect to t=0 .The functionξ(t)(t ∈ C, and t ≠ 0) designed by Riemann and 
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Riemann's hypothesis s =
1

2
+ ti(t ∈ C, s ∈ C, and t ≠ 0)  and ξ(s) = ξ(1 − s)  are equivalent to 

ξ(t)=ξ(−t).So the function ξ(s) is also an even function.The zero points on the graph of an even 

function ξ(s) with respect to the coordinates of its argument on the real number line equal to some 

value are symmetrically distributed on the line perpendicular to the real number line of the complex 

plane. When ξ(t)=0，is also that ξ(t)=ξ(−t)=0,the zeros of ξ(t) are symmetrically distributed with 

respect to t equals 0.When ξ(s)=0,is also that ξ(s)=ξ(1 − s)=0,the zeros of ξ(s) are symmetrically 

distributed with respect to point (
1

2
,0i) on a line perpendicular to the real number line of the complex 

plane.So when  ξ(s)=ξ(1 − s)=0, s and 1-s are pair of zeros of the function  ξ(s) symmetrically 

distributed in the complex plane with respect to point (
1

2
,0i) on a line perpendicular to the real number 

line of the complex plane.When ζ(s)=0, ζ(1-s)=0 is aslo that ζ(s)=ζ(1-s)=0. We find ζ(s)=ζ(1-s)=0 and 

ξ(s)=ξ(1 − s)=0 are just the name of the function is idifferent,the independent variable s is equal to 

1

2
+ti(t∈C,s∈C),that means that the zero arguments of function ζ(s) and function ξ(s) are exactly the 

same,so the zeros of the ζ(s) function in the complex plane also correspond to the symmetric 

distribution of point (
1

2
,0i) on a line perpendicular to the real number line in the complex 

plane,so When ζ(s) = ζ(1 − s) = 0,s and 1-s are pair of zeros of the function ζ(s) symmetrically 

distributed in the complex plane with respect to point (
1

2
,0i) on a line perpendicular to the real number 

line of the complex plane.We got ζ(s) =ζ(s)(s=ρ+yi,ρ ∈ R, y ∈R and y ≠ 0)  

before,When t in Riemann's hypothesis s=
1

2
+ti(t ∈C,s ∈C  and t ≠ 0 ) is a complex number, and 

s=
1

2
+ti=ρ+yi , then s in ζ(s)=ζ(s)(s=ρ+yi,ρ ∈ R, y ∈R and y ≠ 0) is consistent with s in Riemann's 

hypothesis s=
1

2
+ti(t∈C,s∈C andt ≠ 0).If ζ(s)=ζ(s)=0(s=ρ+yi,ρ ∈ R, y ∈R and y ≠ 0),Since s and s are 

a pair of conjugate complex numbers,So s and s must be a pair of zeros of the function ζ(s) in the 

complex plane with respect to point (ρ,0i) on a line perpendicular to the real number line.s is a 

symmetric zero of  1-s, and a symmetric zero of s. By the definition of complex numbers, how can a 

symmetric zero of the same function ζ(s) of the same zero independent variable s on a line 

perpendicular to the real number axis of the complex plane be both a symmetric zero of 1-s on a line 

perpendicular to the real number axis of the complex plane with respect to point (
1

2
,0i) and a symmetric 

zero of s on a line perpendicular to the real number axis of the complex plane with respect to point 

(ρ,0i)?Unless ρ and 
1

2
 are the same value, is also that ρ =

1

2
, and only 1-s=s is true, and 1-s=s is 

wrong.Otherwise it's impossible,this is determined by the uniqueness of the zero of the function ζ(s) 

on the line passing through that point perpendicular to the real number axis of the complex plane with 

respect to the vertical foot symmetric distribution of the zero of the line and the real number axis of the 
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complex plane,Only one line can be drawn perpendicular from the zero independent variable s of the 

function ζ(s) to the real number line of the complex plane, the vertical line has only one point of 

intersection with the real number axis of the complex plane. In the same complex plane, the same zero 

point of the function ζ(s) on the line passing through that point perpendicular to the real number line 

of the complex plane there will be only one zero point about the vertical foot symmetric distribution of 

the line and the real number line of the complex plane.Because ζ(s)  = ζ ( s )(s= ρ +yi, ρ ∈ R , 

y ∈ R  and y ≠ 0 ), then if ζ(ρ + yi )=0,  then  ζ(ρ − yi )=0, and because  ζ(s) = ζ(1 −  s) =0, then 

ζ(1-ρ-yi)=0, and because  ζ(s)=ζ(1 − s)=0, then ζ(1-ρ-yi)=0. The next three equations, ζ(ρ + yi)=0, 

ζ(ρ − yi)=0, and ζ(1-ρ-yi)=0, are all true, so only 1-ρ=ρ is true,only s=
1

2
+ti (t∈R and t ≠ 0,s∈C) is 

true.Since the harmonic series ζ(1) diverges, it has been proved by the late medieval French scholar 

Orem (1323-1382).The Riemann hypothesis and the Riemann conjecture must satisfy the properties of 

the Riemann ζ(s) function and the Riemann ξ(s) function, The properties of the Riemann ζ(s) function 

and the Riemann ξ(s) function are fundamental, the Riemann hypothesis and the Riemann conjecture 

must be correct to reflect the properties of the Riemann ζ(s) function and the Riemann ξ(s) function, 

that is, the roots of the Riemann ξ(t) function must only be real, that is, Re(s) can only be equal to 
1

2
, 

and Im(s) must be real, and Im(s) is not equal to zero.So the Riemann hypothesis and the Riemann 

conjecture must be correct. 

Riemann got ∏
s

2
(s-1)π

−
s

2ζ(s)=ξ(t) and ξ(t)=
1

2
 - (t2 +

1

4
)∫ Ψ(x) 

∞

1
x

−
3

4 cos(
1

2
tlnx ) dx in his paper,or  

∏
s

2
(s-1)π

−
s

2ζ(s)=ξ(t) and ξ(t)=4∫
d(x

3
2Ψ’(x) )

dx

∞

1
x

−
1

4 cos(
1

2
tlnx)dx

[1]
.  

Becasue ζ(
1

2
+ti )=0(t∈R and t ≠ 0,s∈C）is ture, so ∏

s

2
(s-1)π

−
s

2ζ(
1

2
+ti )=ξ(t)=0(t∈R and t ≠ 0,s∈C) 

and ∏
s

2
(s-1)π

−
s

2ζ(
1

2
+ti )=4∫

d(x
3
2Ψ’(x) )

dx

∞

1
x

−
1

4 cos(
1

2
tlnx)dx=ξ(t)=0,and  

ξ(t)=
1

2
 -(t2 +

1

4
)∫ Ψ(x) 

∞

1
x

−
3

4 cos(
1

2
tlnx )=0,so the roots of equations  ∏

s

2
(s-1)π

−
s

2ζ(
1

2
+ti )=ξ(t)=0 and 

4∫
d(x

3
2Ψ’(x) )

dx

∞

1
x

−
1

4 cos(
1

2
tlnx)dx=ξ(t)=0 and ξ(t)=

1

2
 - (t2 +

1

4
)∫ Ψ(x) 

∞

1
x

−
3

4 cos(
1

2
tlnx )=0 must all be real 

numbers.When ζ(s)=0and ξ(t)=0, the real part of the equation ξ(t)=0 must be real between 0 and 

T.Because the real part of the equation ξ(t)=0 has the number of complex roots between 0 and T 

approximately equal to 
T

2π
ln

T

2π
−

T

2π

 [1]
 ,This result of Riemann's estimate of the number of zeros was 

rigorously proved by Mangoldt in 1895. Then,when ζ(s)=0 and ξ(t)=0, the number of real roots of the 

real part of the equation ξ(t)=0 between 0 and T must be approximately equal to 
T

2π
ln

T

2π
−

T

2π

[1]
 ,so 

when the Riemann ζ(s)function has nontrivial zeroes, then the Riemann hypothesis and the Riemann 

conjecture are perfectly valid. 

Definition: 
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Assuming that a(n) is a uniproduct function, then the Dirichlet series ∑ a(n)n−s 
n  is equal 

to the Euler product ∏ P(p，s)p  .Where the product is applied to all prime numbers p, it 

can be expressed as: 1+a(p)p−s+a(p2)p−2s+...，this can be seen as a formal generating 

function, where the existence of a formal Euler product expansion and a(n) being a product 

function are mutually sufficient and necessary conditions. When a(n) is a completely integrative 

function, an important special case is obtained,where P(p，s) is a geometric series, and 

P(p，s)=
1

1−a(p)p−s .When a(n)=1,it is the Riemann zeta function, and more generally the 

Dirichlet feature.  

Euler's product formula: for any complex number s,  

Rs(s) > 1, then ∑ n−s 
n = ∏ (1 − p−s)−1

p  , and when Rs(s) > 1Riemann Zeta function ζ(s) =

∑ n−s 
n =∏ (1 − p−s)−1

p (s ∈ C and Rs(s) > 0 ∧ (s ≠ 1),n∈ Z+, p ∈ Z+, s ∈C，n goes through 

all the natural numbers, p goes through all the prime numbers). 

Riemann zeta function expression: 

ζ(s)=1/1s+1/2s+1/3s+...+1/ms (m tends to infinity, and m is always even). 

 

(1)Multiply both sides of the expression by (1/2s),*for multiplication 

(1/2s)∗ζ(s)=1/1s ∗(1/2s)+1/2s ∗(1/2s)+1/3s ∗(1/2s)+...+1/ms ∗

(1/2s)=1/2s+1/4s+1/6s+...+1/(2 ∗ m)s 

This is given by (1) - (2) 

ζ(s)-(1/2s)*ζ(s)=1/1s+1/2s+1/3s+...+1/ms-[1/2s+1/4s+1/6s+...+1/(2 ∗ m)s] 

The derivation of Euler product formula is as follows: 

ζ(s)-(1/2s)*ζ(s)=1/1s+1/3s+1/5s+...+1/(m − 1)s. 

Generalized Euler product formula: 

Suppose f(n) is a functionthat satisfies f(n1)f(n2)=f(n1n2) and ∑  |f(n)| < 
n + ∞ (n1 and n2 are 

both natural numbers), then∑ f(n) 
n =∏ [1 + f(p) + f(p2) + f(p3)+. . . ]p . 

Proof: 

The proof of Euler product formula is very simple, the only caution is to deal with infinite series 

and infinite products, can not arbitrarily use the properties of finite series and finite products. 

What I prove below is a more general result, and the Euler product formula will appear as a 

special case of this result. 

Due to ∑  |f(n)| < ∞ 
n ，so 1 + f(p) + f(p2) + f(p3)+. .. absolute convergence.Consider the part 

of p<N in the continued product (finite product),Since the series is absolutely convergent and the 

product has only finite terms, the same associative and distributive laws can be used as ordinary 

finite summations and products. 

Using the product property of f(n), we can obtain: 
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∏ [1 + f(p) + f(p2) + f(p3)+. . . ]p<𝑁 =∑ f(n) 
 .The right end of the summation is performed on all 

natural numbers with only prime factors below N (each such natural number occurs only once in 

the summation, because the prime factorization of the natural numbers is unique).Since all 

natural numbers that are themselves below N obviously contain only prime factors below N, So 

Σ'f(n) = ∑  f(n)  
n<𝑁 + R(N),Where R(N) is the result of summing all natural numbers that 

are greater than or equal to N but contain only prime factors below N.From this we 

get:∏ [1 + f(p) + f(p2) + f(p3)+. . . ]p<𝑁 =∑  f(n)  
n<𝑁 + R(N).For the generalized Euler 

product formula to hold, it is only necessary to prove limn→∞ R(N)=0,and this is 

obvious,because |R(N)| ≤ ∑  |f(n)|  
n≥N ,and ∑  |f(n)| < 

n + ∞ sign of 

limn→∞ ∑  |F(n)|  
n≥N =0,thus limn→∞ R(N)=0.Beacuse 1 + f(p) + f(p2) + f(p3)+...=1 +

f(p)+f(p)2+f(p)3+...=[1 − f(p)]−1, so the generalized Euler product formula can also be written 

as: 

∑ f(n) =n ∏ [1 − f(p)]−1
p .In the generalized Euler product formula, take f(n)=n−s,Then 

obviously ∑  |f(n)| < 
n ∞ corresponds to the condition Rs(s)>1 in the Euler product formula, 

and the generalized Euler product formula is reduced to the Euler product formula. 

From the above proof, we can see that the key to the Euler product formula is the basic property 

that every natural number has a unique prime factorization, that is, the so-called fundamental 

theorem of arithmetic. 

For any complex number s,✗(n) is the Dirichlet characteristic and satisfies the following 

properties: 

1: There exists a positive integer q such that ✗(n+q)=✗(n); 

2: when n and q are not mutual prime,✗(n)=0; 

3: ✗(a)✗(b)=✗(ab) for any integer a and b; 

If 0 < 𝑅𝑒(s) < 1,then 

L(s,✗(n))=∑
✗(n)

ns
∞
1 (n∈ Z+, p ∈ Z+, s ∈C，n goes through all the natural numbers, p goes through 

all the prime numbers, ✗(n)∈R∧ (✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
1

1−a(p)p−s). 

Next we prove the generalized Riemann conjecture when the Dirichlet eigen function✗ (n) is 

any real number that is not equal to zero, 

and 

η (s)= ∑
(−1)n−1

ns
∞
1 (s ∈ C and Rs(s) > 0 ∧ (s ≠ 1))  and η (s)=(1- 21−s ) ζ(s)(s ∈ C and Rs(s) >

0 ∧ s ≠

1, ζ(s) is the Riemann Zeta function) ,so  Riemann  ζ(s) =
η(s)

(1−21−s)
=

1

(1−21−s)
∑

(−1)n−1

ns =∞
1

(−1)n−1

(1−21−s)
∏ (1 − p−s)−1

p (s ∈ C and Rs(s) > 0 ∧ (s ≠ 1),n∈ Z+, p ∈ Z+, s ∈C，n goes through 
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all the natural numbers, p goes through all the prime numbers), 

So 

GRH(s,✗(n))=L(s,✗(n))=∑ f(n) =n ∑
✗(n)

ns
∞
1 = ∑ a(n)n−s 

n = ∏ P(p，s)p = ∏ (
1

1−a(p)p−s)p  

(n∈ Z+, p ∈ Z+, s ∈C，n goes through all the natural numbers, p goes through all the prime 

numbers, ✗(n)∈R∧ (✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
1

1−a(p)p−s). 

a(p)p−s=a(p) ∗ p−ρ 1

(cos(ylnp)+isin(ylnp))  =a(p) ∗ (p−ρ(cos(ylnp) − isin(ylnp)) , 

(1 − a(p) ∗ p−s) =1- a(p) ∗ (p−ρ(cos(ylnp) − isin(ylnp)) = 1 − a(p) ∗ p−ρ  cos(ylnp) + a(p) ∗

ip−ρsin(ylnp) , 

a(p) ∗ p−s=a(p) ∗ p−ρ 1

(cos(ylnp)−isin(ylnp))  =a(p) ∗ (p−ρ(cos(ylnp) + isin(ylnp)) , 

(1 − a(p)p−s)=1-a(p)p−ρ cos(ylnp) − ia(p)p−ρsin(ylnp)  , 

because 

(1 − a(p) ∗ p−s)=1 − a(p) ∗ p−s , 

so 

(1 − a(p)p−s)−1=(1 − a(p)p−s)−1 , 

so 

∏ (1 − a(p)p−s)−1
p =∏ (1 − a(p)p−s)−1

p  ,      

becuse L(s,✗(n))=∑ a(n)n−s 
n = ∏ (1 − a(p)p−s)−1

p  and  L(s,✗(n))=∑ a(n)n−s 
n =

∏ (1 − a(p)p−s)−1
p , for the Generalized Riemann function 

L(s,✗(n))=∑
✗(n)

ns = ∑ a(n)n−s 
n = ∏  p

1

1−a(p)p−s
∞
1 (n∈ Z+, p ∈ Z+, s ∈C，n goes through all the 

natural numbers, p goes through all the prime numbers, ✗

(n)∈R∧ (✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
1

1−a(p)p−s). 

so  

L(s,✗(n))=L(s,✗(n)) . 

a(p)p1−s = a(p)p(1−ρ−yi) = a(p)p1−ρx−yi = a(p)p1−ρ(cos(lnp) +

i sin(lnp))−y=a(p)p1−ρ(cos(ylnp) − isin(ylnp)) , 

a(p)p1−s = a(p)p(1−ρ+yi) = a(p)p1−ρpyi = a(p)p1−ρ(pyi) =

a(p)p1−ρ(cos(lnp) + i sin(lnp))y=a(p)p1−ρ(cos(ylnp) + isin(ylnp)) , 

then 

a(p)p−(1−s)=a(p)pρ−1 1

(cos(ylnp)−isin(ylnp))  =a(p) ∗ (pρ−1(cos(ylnp) + isin(ylnp)) , 
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(1 − a(p)p−(1−s))=1-a(p)pρ−1(cos(ylnp) + isin(ylnp)) = 

1-a(p)pρ−1 cos(ylnp) − a(p)pρ−1isin(ylnp)  , 

(1 − a(p)p−s) =1- a(p)(p−ρ(cos(ylnp) + isin(ylnp)) = 1 −

a(p)p−ρ  cos(ylnp) − ia(p)p−ρsin(ylnp) , 

When ρ=
1

2
 , then  

(1 − a(p)p−(1−s)) =(1 − a(p)p−s ), 

(1 − a(p)p−(1−s))−1=(1 − a(p)p−s )−1, 

so 

∏ (1 − a(p)p−(1−s))−1
p =∏ (1 − a(p)p−s)−1

p , 

becuse L(1 − s,✗(n))=∏ (1 − a(p)p−(1−s))−1
p  and  L(s,✗(n))=∏ (1 − a(p)p−s)−1

p , 

n∈ Z+, p ∈ Z+, s ∈C，n goes through all the natural numbers, p goes through all the prime 

numbers, ✗(n)∈R∧ (✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
1

1−a(p)p−s . 

so  

Only L(1 − s,✗(n))=L(s,✗(n)) , 

and 

Only L(1 − s,✗(n))=L(s,✗(n)). 

Because L(s,✗(n))=✗(n)ζ(s) and L(1 − s,✗(n))=✗(n)ζ(1-s), so When only ρ=
1

2
, it must be 

true that L(s,✗(n))=L(s,✗(n)), and it must be true that L(1 − s,✗(n))=L(s,✗(n)).  

Suppose k∈ R, 

a(p)pk−s = a(p)p(k−ρ−yi) = a(p) ∗ pk−ρx−yi = a(p)pk−ρ(cos(lnp) +

i sin(lnp))−y=a(p)pk−ρ(cos(ylnp) − isin(ylnp)) , 

a(p)pk−s=a(p)p(k−ρ+yi)=a(p)pk−ρpyi=a(p)p1−ρ(pyi) = a(p)pk−ρ(cos(lnp) + i sin(lnp))y= 

a(p)(pk−ρ(cos(ylnp) + isin(ylnp)) , 

then 

a(p)p−(k−s)=a(p)pρ−k 1

(cos(ylnp)−isin(ylnp))  =a(p) ∗ (pρ−k(cos(ylnp) + isin(ylnp)) , 

(1 − a(p)p−(k−s)) =1- (a(p)pρ−k ∗ (cos(ylnp) + isin(ylnp)) = 1 − a(p) ∗ pρ−k  cos(ylnp) −

ipρ−ksin(ylnp) , 

(1 − a(p)p−s) =1- (a(p) ∗ p−ρ(cos(ylnp) + isin(ylnp)) = 1 −

a(p)p−ρ  cos(ylnp) − ia(p)p−ρsin(ylnp) , 

When ρ=
k

2
(k∈ R) , then  

(1 − a(p)p−(k−s)) =(1 − a(p)p−s), 

(1 − a(p)p−(k−s))−1=(1 − a(p)p−s)−1, 

so 
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∏ (1 − a(p)p−(k−s))−1
p =∏ (1 − a(p)p−s)−1

p  , 

becuse L(k − s,✗(n))=∏ (1 − a(p)p−(k−s))−1
p  and  L(s,✗(n))=∏ (1 − a(p)p−s)p , for the 

generalized Riemann function L(s,✗(n))(n∈ Z+, p ∈ Z+, s ∈C，n goes through all the natural 

numbers, p goes through all the prime numbers, 

✗(n)∈R∧ (✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
1

1−a(p)p−s). 

so  

Only L(k − s,✗(n))=L(s,✗(n)), 

and 

Only L(k − s,✗(n))=L(s,✗(n)). 

And because Only L(1 − s,✗(n))= L(s,✗(n)),so only k=1 be true. 

so 

GRH(s,✗(n)) = L(s,✗(n)) = ∑
✗(n)

xs
∞
1 =

✗(n)η(s)

(1−21−s)
=

✗(n)

(1−21−s)
∑

(−1)n−1

xs
∞
1 =

✗(n)

(1−21−s)
∑

(−1)n−1

xρ+yi
∞
1 =

(−1)n−1

(1−21−s)
∑ ✗(n)(

1

xρ
∗

1

xyi
)∞

1 =

(−1)n−1

(1−21−s)
∑ ✗(n)(x−ρ)

1

(cos(lnx)+isin(lnx))y
∞
1 =

(−1)n−1

(1−21−s)
∑ ✗(n)(x−ρ(cos(lnx) +  isin(lnx))−y)∞

1 = ∑ ✗(n)(x−ρ(cos(ylnx) −∞
1

isin(ylnx)) ,  

GRH(s,✗(n)) = L(s,✗(n)) = ∑
✗(n)

ns

∞

1

=
✗(n)η(s)

(1 − 21−s)
=

✗(n)

(1 − 21−s)
∑

(−1)n−1

xs

∞

1

=
✗(n)

(1 − 21−s)
∑

(−1)n−1

xρ−yi

∞

1

=
(−1)n−1

(1 − 21−s)
∑✗(n)(

1

xρ
∗

1

x−yi

∞

1

)

=
1

(1 − 21−s)
∑(✗(n)

1

xρ
∗

1

(cos(lnx) + i sin(lnx))−y
)

∞

1

=
1

(1 − 21−s)
∑(✗(n) ∗ x−ρ(cos(lnx) +  isin(lnx))y)

∞

1

= 

1

(1−21−s)
∑ (✗(n) ∗ x−ρ(cos(ylnx) + isin(ylnx)) ∞

1 , 

GRH(1 − s,✗(n)) = L(1 − s,✗(n)) = ∑
✗(n)

x1−s
∞
1 =

✗(n)η(1−s)

(1−21−s)
=

✗(n)

(1−21−s)
∑

(−1)n−1

x1−ρ−yi
∞
1 =
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(−1)n−1

(1−21−s)
∑ ✗(n)(

1

x1−ρ
∗

1

x−yi
)∞

1 =
(−1)n−1

(1−21−s)
∑ (✗(n) ∗ xρ−1(cos(ylnx) + isin(ylnx)) ∞

1 , 

Suppose 

U=[ ✗(n)1−ρCos(yln1)- ✗(n)2−ρCos(yln2)+ ✗(n)3−ρCos(yln3)−✗(n) 4−ρCos(yln4)+...], 

V=[✗(n)1−ρSin(yln1)− ✗(n)2−ρsin(yln2)+ ✗(n)3−ρsin(yln3)−✗(n)4−ρsin(yln4)+...] , 

then 

L(s,✗(n))=L(s,✗(n)) . 

And x goes through all the natural numbers, so x=1,2,3... n-1,n ... ,let's just plug in, so  

L(s,✗(n))= ∑
✗(n)

ns
∞
1 =[ ✗(n)1−ρCos(yln1)− ✗(n)2−ρCos(yln2)+ ✗(n)3−ρCos(yln3)−✗(n) 4−ρ

Cos(yln4)+...]-i[✗(n)1−ρSin(yln1)− ✗(n)2−ρsin(yln2)+ ✗(n)3−ρsin(yln3)− ✗(n)4−ρsin(yln4)+

...]= U-Vi, 

U=[ ✗(n)1−ρCos(yln1)−✗(n)2−ρCos(yln2)+ ✗(n)3−ρCos(yln3)−✗(n) 4−ρCos(yln4)+...], 

V=[✗(n)1−ρSin(yln1)−✗(n)2−ρsin(yln2)+ ✗(n)3−ρsin(yln3)−✗(n)4−ρsin(yln4)+...] , 

Then 

L(s,✗(n))= ∑
✗(n)

ns
∞
1 ==[ ✗(n)1−ρCos(yln1)−✗(n)2−ρCos(yln2)+ ✗(n)3−ρCos(yln3)−4−ρCos(

yln4)+...]+i[✗(n)1−ρSin(yln1)−✗(n)2−ρsin(yln2)+ ✗(n)3−ρsin(yln3)−✗(n) 4−ρsin(yln4)+ ...]= 

U+Vi, 

U=[ ✗(n)1−ρCos(yln1)−✗(n)2−ρCos(yln2)+ ✗(n)3−ρCos(yln3)−✗(n) 4−ρCos(yln4)+...], 

V=[✗(n)1−ρSin(yln1)−✗(n)2−ρsin(yln2)+ ✗(n)3−ρsin(yln3)− ✗(n)4−ρsin(yln4)+...] , 

L(s,✗(n))and L(s,✗(n)) are complex conjugates of each other,that is L(s,✗(n))=L(s,✗(n)).  

When ρ=
1

2
, 

then 

L(s,✗(n))=L(1 − s,✗(n))= U-Vi, 

U=[ ✗(n)1−ρCos(yln1)−✗(n)2−ρCos(yln2)+ ✗(n)3−ρCos(yln3)−✗(n) 4−ρCos(yln4)+...], 

V=[✗(n)1−ρSin(yln1)−✗(n)2−ρsin(yln2)+ ✗(n)3−ρsin(yln3)− ✗(n)4−ρsin(yln4)+...] . 

And When ρ=
1

2
, 
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then 

Only L(1 − s,✗(n))=L(s,✗(n)) . 

GRH(k − s,✗(n)) = L(k − s,✗(n)) = ∑
✗(n)

xk−s
∞
1 =

✗(n)η(k−s)

(1−21−s)
=

✗(n)

(1−21−s)
∑

(−1)n−1

xk−ρ−yi
∞
1 =

(−1)n−1

(1−21−s)
∑ ✗(n)(

1

xk−ρ
∗

1

x−yi
)∞

1 =
(−1)n−1

(1−21−s)
∑ (✗(n) ∗ xρ−k(cos(ylnx) + isin(ylnx)) ∞

1 , 

W=[ ✗(n)1ρ−kCos(yln1)−✗(n)2ρ−kCos(yln2)+ ✗(n)3ρ−kCos(yln3)−✗(n) 4ρ−kCos(yln4)+...] 

U=[✗(n)1ρ−kSin(yln1)−✗(n)2ρ−ksin(yln2)+ ✗(n)3ρ−ksin(yln3)− ✗(n)4ρ−ksin(yln4)+...] . 

When ρ=
k

2
(k∈ R), 

then 

Only L(k − s,✗(n))=L(s,✗(n)) =  W − Ui. 

But the Riemann ζ(s)function only satisfies ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s),so when ζ(s)=0, 

then only ζ(1 − s) = ζ(s) =0, and when ζ(s) =0, then only ζ(1 − s) = ζ(s) =0, which is 

ζ(k − s)=ζ(1 − s) = ζ(s),so only k=1 be true.so only Re(s)=
k

2
=

1

2
. 

So Only L(1 − s,✗(n)) = L(s,✗(n)) is true, so only k=1 is true. 

According the equation ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s) obtained by Riemann,since Riemann 

has shown that the Riemann ζ(s) function has zero, that is, in ζ(1-s)=21−sπ −sCos(
π s

2
)Γ(s)ζ(s), 

ζ(s)=0 is true. So only When ρ=
1

2
 and ζ(s)=0 and ✗(n) ≠0, then L(s,✗(n))=✗(n)ζ(s)=0 is true. 

Because L(s,✗(n))=✗(n)ζ(s) and L(1 − s,✗(n))=✗(n)ζ(1-s), so When ρ=
1

2
, it must be true that 

L(s,✗(n))=L(s,✗(n)), and it must be true that L(1 − s,✗(n))=L(s,✗(n)).  

According ζ(1 − s) =ζ(s)=0 and ζ(s)=ζ( s )=ζ(1- s )=0, so L(s,✗(n)) = L(1 − s,✗(n)) =0 and  

L(s,✗(n))=L(s,✗(n))=L(1 − s,✗(n))=0,then s=s or s=1-s or s=1-s ,so s∈R, or ρ+yi=1-ρ-yi ,or 

ρ-yi=1-ρ-yi, so  s ∈ R, or ρ=
1

2
and y=0,or ρ =

1

2
 and y ∈R and y≠ 0, so s∈ R for example s=-2n(n∈

Z+), or s=
1

2
+oi ,or s=

1

2
+yi(y ∈R and y ≠ 0).ζ(

1

2
) > 𝜁(1) = ∞,drop it, when s=-2n(n∈ Z+),it's the 

trivial zero of the Riemann ζ(s)  function, drop it.So only s =
1

2
+ yi (y ∈ R , and y ≠ 0, s ∈
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C) is true, or say s =
1

2
+ ti (t ∈ R , and t ≠ 0, s ∈ C）is true.And beacause only when ρ=

1

2
,the  

next three equations, L(ρ + yi,✗(n))=0, L(1 − ρ − yi,✗(n))=0 and L(ρ − yi,✗(n))=0 are all 

true. And because L(
1

2
,✗(n))=∞, so only s=

1

2
+yi (y∈R and y ≠ 0,s∈C) is true,or say only s=

1

2
+ti 

(t∈R and t ≠ 0,s∈C）is true. 

The Generalized Riemann hypothesis and the Generalized Riemann conjecture must satisfy the 

properties of the L(s,✗(n)) function, The properties of the L(s,✗(n)) function are fundamental, 

the Generalized Riemann hypothesis and the Generalized Riemann conjecture must be correct to 

reflect the properties of the L(s,✗(n)) function , that is, the roots of the L(s,✗(n))=0 can only be  

s=
1

2
+ti(t∈C,s∈C and t ≠ 0), that is, Re(s) must only be equal to 

1

2
, and Im(s) must be real, and Im(s) is 

not equal to zero.So the Generalized Riemann hypothesis and the Generalized Riemann 

conjecture must be correct. 

According L(1 − s,✗(n))= L(s,✗(n))=0,so the zeros of theL(s,✗(n))function in the complex 

plane also correspond to the symmetric distribution of point (
1

2
,0i) on a line perpendicular to the real 

number line in the complex plane,so When L(1 − s,✗(n)) =  L(s,✗(n)) = 0,s and 1-s are pair of 

zeros of the function L(s,✗(n)) symmetrically distributed in the complex plane with respect to point 

(
1

2
,0i) on a line perpendicular to the real number line of the complex plane. 

We got L(s,✗(n)) =L(s,✗(n))(s=ρ+yi,ρ ∈ R, y ∈R and y ≠ 0) before,When t in Generalized 

Riemann's hypothesis s=
1

2
+ti(t∈C,s∈C and t ≠ 0) is a complex number, and s=

1

2
+ti=ρ+yi , then s in 

L(s,✗(n)) = L(s,✗(n)) (s= ρ +yi, ρ ∈ R , y ∈ R  and y ≠ 0 ) is consistent with s in Generalized 

Riemann's hypothesis s=
1

2
+ti(t∈C,s∈C  andt ≠ 0).when L(s,✗(n)) =L(s,✗(n))=0(s=ρ+yi,ρ ∈ R, 

y ∈R and y ≠ 0),since s and s are a pair of conjugate complex numbers, so s and s must be a pair of 

zeros of the Generalized function L(s,✗(n))in the complex plane with respect to point (ρ,0i) on a 

line perpendicular to the real number line.s is a symmetric zero of 1-s, and a symmetric zero of s. By 

the definition of complex numbers, how can a symmetric zero of the same Generalized Riemann 

function L(s,✗(n)) of the same zero independent variable s on a line perpendicular to the real 
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number axis of the complex plane be both a symmetric zero of 1-s on a line perpendicular to the real 

number axis of the complex plane with respect to point (
1

2
,0i) and a symmetric zero of s on a line  

perpendicular to the real number axis of the complex plane with respect to point (ρ,0i)?Unless ρ and 
1

2
 

are the same value, is also that ρ =
1

2
, and only 1-s=s is true, only s=

1

2
+ti (t∈R and t ≠ 0,s∈C) is 

true. Otherwise it's impossible,this is determined by the uniqueness of the zero of Generalized 

Riemann function L(s,✗(n)) on the line passing through that point perpendicular to the real number 

axis of the complex plane with respect to the vertical foot symmetric distribution of the zero of the line 

and the real number axis of the complex plane,Only one line can be drawn perpendicular from the zero 

independent variable s of Generalized Riemann function L(s,✗(n))on the real number line of  the 

complex plane, the vertical line has only one point of intersection with the real number axis of the 

complex plane. In the same complex plane, the same zero point of Generalized Riemann function 

L(s,✗(n)) on the line passing through that point perpendicular to the real number line of the complex 

plane there will be only one zero point about the vertical foot symmetric distribution of the line and the 

real number line of the complex plane,so I have proved the generalized Riemann conjecture 

when the Dirichlet eigen function✗(n) is any real number that is not equal to zero,Since the 

nontrivial zeros of the Riemannian function ζ(s) and the generalized Riemannian function 

L(s,✗(n)) are both on the critical line perpendicular to the real number line of Re(s)=
1

2
 and 

Im(s)≠ 0, these nontrivial zeros are general complex numbers of Re(s)=
1

2
 and Im(s)≠ 0,so I 

have proved the generalized Riemann conjecture when the Dirichlet eigen function✗(n) is 

any real number that is not equal to zero. 

The Generalized Riemann hypothesis and the Generalized Riemann conjecture must satisfy the 

properties of the L(s,✗(n)) function, The properties of the L(s,✗(n)) function are fundamental, 

the Generalized Riemann hypothesis and the Generalized Riemann conjecture must be correct to 

reflect the properties of the L(s,✗(n))function, that is, the roots of the L(s,✗(n))=0 can only be  

s=
1

2
+ti(t∈C,s∈C and t ≠ 0), that is, Re(s) can only be equal to 

1

2
, and Im(s) must be real, and Im(s) is 

not equal to zero.So the Generalized Riemann hypothesis and the Generalized Riemann 

conjecture must be correct.  

The Generalized Riemann hypothesis and the Riemann conjecture are perfectly valid, and the 

Polygnac conjecture and the twin prime conjecture and Goldbach's conjecture must satisfy the 

properties of the Generalized Riemann ζ(s) function and the Riemann ξ(s) function. 
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When L(s,✗(n)) = 0 (n∈ Z+, p ∈ Z+, s ∈C, n goes through all the natural numbers, p goes 

through all the prime numbers ,  

✗(n) ∈R ∧✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
1

1−a(p)p−s
),and s =

1

2
+ ti (t ∈ R and t ≠ 

0, s ∈ C), for any complex number s,when ✗(n) is the Dirichlet characteristic and satisfies the 

following properties: 

1: There exists a positive integer q such that ✗(n+q)=✗(n)(n ∈ Z+); 

2: when n and q are not mutual prime,✗(n)=0(n ∈ Z+);  

3: ✗(a)✗(b)=✗(ab) (a ∈ Z+ , b ∈ Z+)for any integer a and b; 

Suppose q=2k(k ∈ Z+), if n and n+q are all prime number, 

then ✗(n + q) =✗(n) =✗(p)≡1(n, n + q, and p , they all go through all the prime numbersr), 

when n and q are not mutual prime,✗(n)=0(n ∈ Z+),and ✗(a)✗(b)=✗(ab) 

(a ∈ Z+ , b ∈ Z+ , a and b are all prime number)  for any prime number a and b,then the 

three properties described by the Dirichlet eigenfunction✗(n) above fit the definition of the 

Polignac conjecture, the Polignac conjecture states that for all natural numbers k, there are 

infinitely many pairs of prime numbers (p,p+2k)(k ∈ Z+). In 1849, the French mathematician 

A. Polignac proposed the conjecture.When k=1, the Polygnac conjecture is equivalent to the 

twin prime conjecture.In other words, when L(s,✗(n)) = 0(n∈ Z+, p ∈ Z+, s ∈C，n goes 

through all the natural numbers, p goes through all the prime numbers, ✗(n)∈R ∧ (✗(n) ≠

0),a(n) = a(p)=✗(n)),P(p，s)=
1

1−a(p)p−s
), and generalized Riemann hypothesis and the 

generalized Riemann conjecture are true, then the Polygnac conjecture must be completely 

true, and if the Polignac conjecture must be true, then the twin prime conjecture and 

Goldbach's conjecture must be true.I proved that the generalized Riemannian hypothesis and the 

generalized Riemannian conjecture are true, so when  L(s,✗(n)) = 0(n∈ Z+, p ∈ Z+, s ∈C，n 

goes through all the natural numbers, p goes through all the prime numbers, 

✗(n) ) ∈ R ∧ (✗(n)) ≠ 0) , a(n) = a(p) =✗(n)  ), P(p，s) =
1

1−a(p)p−s
) and s =

1

2
+ ti (t ∈

R and t ≠ 0, s ∈ C) ,I also proved that the Polignac conjecture,twin prime conjecture must be 

true and Goldbach conjecture are completely or almost true.The Generalized Riemann 

hypothesis and the Riemann conjecture are perfectly valid, so the Polygnac conjecture and the twin 
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prime conjecture and Goldbach's conjecture must satisfy the properties of the Generalized 

Riemann ζ(s) function and the Riemann ξ(s) function, so the Polignac conjecture,twin prime 

conjecture must be true and Goldbach conjecture is almost or completely true. 

Riemann hypothesis and the Riemann conjecture are completely correct and the Generalized Riemann 

hypothesis and the Generalized Riemann conjecture are completely correct and the Polignac 

conjecture,twin prime conjecture must be tue and Goldbach conjecture are almost or completely 

true.  

III. Conclusion 

After the Riemann hypothesis and the Riemann conjecture and the Generalized Riemann hypothesis 

and the Generalized Riemann conjecture are proved to be completely valid, the research on the 

distribution of prime numbers and other studies related to the Riemann hypothesis and the Riemann 

conjecture will play a driving role. Readers can do a lot in this respect. 
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